Concepts of Automata Theory	
Umar Fiaizhttp://www.pieas.edu.pk/umarfaiz/cis317	

Concepts of Automata Theory

Three basic concepts
Alphabet a set of symbols
Strings a list of symbols from an alphabet
Language a set of strings from the same alphabet

Concepts of Automata Theory

Alphabets:

A common way to talk about words, number, pairs of words, etc. is by representing them as strings. To define strings, we start with an alphabet

Concepts of Automata Theory

Strings:

Definition: A string (or word) is a finite sequence of symbols from some alphabet.

Example - 1011 is a string from alphabet $\Sigma=\{0,1\}$
-Empty string ε - a string with zero occurrences of symbols
-Length $|w|$ of string w - the number of positions for symbols in w

Examples - $|0111|=4,|e|=0 \ldots$
Set of all strings over S--- denoted as S^{*}. It is not difficult to know that $\mathrm{S}^{*}=\mathrm{SO} \cup \mathrm{SI} \cup \mathrm{S} 2 \cup \ldots$

Concepts of Automata Theory

Alphabets:

Definition: An alphabet is a finite, nonempty set of symbols.
Conventional notation, S.
The term "symbol" is usually not defined.
Example:

$$
\Sigma_{1}=\{\mathrm{a}, \mathrm{~b}, \mathrm{c}, \mathrm{~d}, \ldots, \mathrm{z}\}: \text { the set of letters in English }
$$

$\Sigma_{2}=\{0,1, \ldots, 9\}$: the set of (base 10) digits
$\Sigma_{3}=\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}, \#\}$: the set of letters plus the special symbol \#
$\Sigma_{4}=\{()$,$\} : the set of open and closed brackets$

Concepts of Automata Theory

Strings:

Example: A string (or word) is a finite sequence of symbols from some alphabet.

$$
\begin{aligned}
& \text { abfbz is a string over } \Sigma_{1}=\{a, b, c, d, \ldots, z\} \\
& 9021 \text { is a string over } \Sigma_{2}=\{0,1, \ldots, 9\} \\
& \text { ab\#bc is a string over } \Sigma_{3}=\{\mathrm{a}, \mathrm{~b}, \ldots, \mathrm{z}, \#\} \\
&)) 0\left(0 \text { is a string over } \Sigma_{4}=\{(,)\}\right.
\end{aligned}
$$

Concepts of Automata Theory

Languages:
Definition: A language is a set of strings all chosen from some S^{*}.
If Σ is an alphabet, and $L \subseteq \Sigma^{*}$, then L is a language over Σ.
Examples:

- The set of all legal English words is a language. Why? What is the alphabet here? Answer: the set of all letters
- A legal program of C is a language. Why? What is the alphabet here? Answer: a subset of the ASCII characters

Concepts of Automata Theory

Languages:
Ways to describe languages:
Description by exhaustive listing

- $L I=\{a, a b, a b c\}$ (finite language; listed one by one)
- $L 2=\{a, a b, a b b, a b b b, \ldots\}$ (infinite language; listed partially)
- $L 3=L\left(a b^{*}\right)$ (infinite language; expressed by a regular expression)

Languages

Languages can be used to describe problems with "yes/no" answers, for example:
$\mathrm{LI}=$ The set of all strings over SI that contain the substring "fool"
$\mathrm{L} 2=\quad$ The set of all strings over S2 that are divisible by 7 $=\{7,14,21, \ldots\}$
$\mathrm{L} 3=$ The set of all strings of the form $\mathrm{s} \# \mathrm{~s}$ where s is any string over $\{\mathrm{a}, \mathrm{b}, \ldots, \mathrm{z}\}$
L4 $=$ The set of all strings over S4 where every (can be matched with a subsequent)

Concepts of Automata Theory

Languages:
Examples:
The set of all strings of $n 0$'s followed by n I's for $n \geq 0$: $\{\varepsilon, 01,0011,000111, \ldots\}$

- Σ^{*} is an infinite language for any alphabet.
- $\phi=$ the empty language (not the empty string e) is a language over any alphabet.
- $\{\varepsilon\}$ is a language over any alphabet (consisting of only one string, the empty string e).

Concepts of Automata Theory

Languages:
Ways to describe languages:
Description by generic elements
$\mathrm{L} 4=\{\mathrm{x} \mid \mathrm{x}$ is over $\mathrm{V}=\{\mathrm{a}, \mathrm{b}\}$, begins with a , followed by any number of b, possible none $\}$
(note: $L 4=L 3=L 2$)
Description by integer parameters

$$
\begin{aligned}
& \mathrm{L} 5=\{\mathrm{abn} \mid \mathrm{n} \geq 0\} \\
& \text { (note: } \mathrm{L} 5=\mathrm{L} 4=\mathrm{L} 3=\mathrm{L} 2 \text {) }
\end{aligned}
$$

Concepts of Automata Theory

Operations on Languages:
Languages are sets, and operations of sets may be applied to them:
(I) union $-A \cup B=\{a \mid a \in A$ or $a \in B\}$
(2) intersection - $A \cap B=\{a \mid a \in A$ and $a \in B\}$
(3) difference $-A-B=\{a \mid a \in A$ and $a \notin B\}$
(4) product $-A \times B=\{(a, b) \mid a \in A$ and $b \in B\}$
(5) complement $-\bar{A}=\{a \mid a \in U$ and $a \notin A\}$
(6) power set - $2 A=\{B \mid B \subset A\}$
U is the universal set, like an alphabet for sets of symbols

Concepts of Automata Theory

Operations on Languages:
The usual set operations
$\{a, a b, a a a a\} \bigcup\{b b, a b\}=\{a, a b, b b, a a a a\}$
$\{a, a b, a a a a\} \cap\{b b, a b\}=\{a b\}$
$\{a, a b, a a a a\}-\{b b, a b\}=\{a, a a a a\}$
Complement: $\bar{L}=\Sigma *-L$
$\{a, b a\}=\{\lambda, b, a a, a b, b b, a a a, \ldots\}$

Concepts of Automata Theory

Operations on Languages:
Reverse:

$$
L^{R}=\left\{w^{R}: w \in L\right\}
$$

Definition:

$$
\{a b, a a b, b a b a\}^{R}=\{b a, b a a, a b a b\}
$$

Examples:

$$
L=\left\{a^{n} b^{n}: n \geq 0\right\}
$$

$$
L^{R}=\left\{b^{n} a^{n}: n \geq 0\right\}
$$

Concepts of Automata Theory

Operations on Languages:
Concatenation:
Definition: $L_{1} L_{2}=\left\{x y: x \in L_{1}, y \in L_{2}\right\}$

$$
\{a, a b, b a\}\{b, a a\}
$$

Example:

$$
=\{a b, a a a, a b b, a b a a, b a b, b a a a\}
$$

Concepts of Automata Theory

Operations on Languages:
Star-Closure (Kleene *):
Definition: $\quad L^{*}=L^{0} \cup L^{1} \cup L^{2} \cdots$

Example:

$$
\{a, b b\}^{*}=\left\{\begin{array}{l}\lambda, \\ a, b b, \\ a a, a b b, b b a, b b b b, \\ a a a, a a b b, a b b a, a b b b b, \ldots\end{array}\right\} ; ? ~
$$

Concepts of Automata Theory

Operations on Languages:
Positive Closure:

$$
\text { Definition: } \quad \begin{aligned}
L^{+} & =L^{1} \bigcup L^{2} \bigcup \cdots \\
& =L^{*}-\{\lambda\}
\end{aligned}
$$

$$
\{a, b b\}^{+}=\left\{\begin{array}{l}
a, b b, \\
a a, a b b, b b a, b b b b, \\
a a a, a a b b, a b b a, a b b b b, \ldots
\end{array}\right\}
$$

\qquad

